题意:给定 \(a[l...r]\),多次询问区间 \([l,r]\) 中的最大连续异或和 \(a_i⊕a_{i+1}⊕...⊕a_{j},l≤i≤j≤r\)
一眼过去认为是不可做的,但题目给出 \(n=1.2e4\),提供了分块暴力的余地
首先处理成前缀形式,对于询问 \([l,r]\) 即为 \([l-1,r]\) 中 寻找两个数 xor 最大
维护 \(f[i][j]\):第 i 个块到第 j 个数的任意异或最大值
这个只需 \(O(30n\sqrt{n})\) 的代价即可预处理
对于每次询问,首个残缺的块暴力,其余块直接由 \(f\) 得到答案,复杂度 \(O(30m\sqrt{n})\)
Yet Another Similar Problem : https://www.cnblogs.com/caturra/p/8429665.html
#include<bits/stdc++.h>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define iter(i,j) for(int i=0;i<(j).size();i++)
#define print(a) printf("%lld",(ll)a)
#define println(a) printf("%lld\n",(ll)a)
#define printbk(a) printf("%lld ",(ll)a)
#define IOS ios::sync_with_stdio(0)
using namespace std;
const int MAXN = 2e4+11;
const int oo = 0x3f3f3f3f;
typedef long long ll;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int T[MAXN],a[MAXN],b[MAXN];
struct TRIE{
int tot;
int son[MAXN*40][2],size[MAXN*40];
void init(){
tot=0;
son[0][0]=son[0][1]=size[0]=0;
memset(T,0,sizeof T);
}
int insert(int old,int val){
int rt,o;rt=o=++tot;
rrep(i,30,0){
son[o][0]=son[old][0],
son[o][1]=son[old][1];
size[o]=size[old]+1;
int wh=val>>i&1;
son[o][wh]=++tot;
old=son[old][wh];
o=son[o][wh];
}
size[o]=size[old]+1;
return rt;
}
int query(int l,int r,int val){
int ans=0;
rrep(i,30,0){
int wh=val>>i&1;
if(size[son[r][wh^1]]-size[son[l][wh^1]]){
ans|=(1<<i),r=son[r][wh^1],l=son[l][wh^1];
}else{
r=son[r][wh],
l=son[l][wh];
}
}
return ans;
}
}trie;
vector<int> vec[233];
int head[233],pos[MAXN];
int f[233][MAXN];
int main(){
int n,m;
while(cin>>n>>m){
trie.init();
rep(i,1,n) a[i]=read();
rep(i,1,n) b[i]=b[i-1]^a[i];
rep(i,1,n) T[i]=trie.insert(T[i-1],b[i]);
int sz=sqrt(n)+1;
rep(i,1,sz+3) vec[i].clear();
int now=0;
rep(i,1,n){
if(vec[now].size()==sz||now==0) head[++now]=i;
vec[now].push_back(a[i]);
pos[i]=now;
}
memset(f,0,sizeof f);
rep(i,1,now){
rep(j,head[i],n){
f[i][j]=max(f[i][j-1],trie.query(T[head[i]-1],T[j],b[j]));
}
}
int ans=0;
while(m--){
int l=read();
int r=read();
int x=((ll)l+ans)%n+1;
int y=((ll)r+ans)%n+1;
l=min(x,y); r=max(x,y);
ans=0;
--l;
if(pos[l]==pos[r]){
rep(i,l,r){
ans=max(ans,trie.query(T[l-1],T[r],b[i]));
}
}else{
ans=f[pos[l]+1][r];//best[pos[l+1]][r]
rep(i,l,head[pos[l]+1]-1){
ans=max(ans,trie.query(T[l-1],T[r],b[i]));
}
}
println(ans);
}
}
return 0;
}