题意:给一个 1-base 数组 {a},有 N 次操作,每次操作会使一个位置无效。一个区间的权值定义为这个区间里选出一些数的异或和的最大值。求在每次操作前,所有不包含无效位置的区间的权值的最大值。
线性基删除不知道怎么维护,不妨逆向添加
然后区间连通性的维护自然要应用到并查集,每次操作 mark 一下当前位置,如果在操作时左边的区间已经 mark 过就搞它,右边同理
注意 find 时谁的基被插入
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<string>
#include<vector>
#include<stack>
#include<queue>
#include<set>
#include<map>
#include<bitset>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define iin(a) scanf("%d",&a)
#define lin(a) scanf("%lld",&a)
#define din(a) scanf("%lf",&a)
#define s0(a) scanf("%s",a)
#define s1(a) scanf("%s",a+1)
#define print(a) printf("%lld",(ll)a)
#define enter putchar('\n')
#define blank putchar(' ')
#define println(a) printf("%lld\n",(ll)a)
#define IOS ios::sync_with_stdio(0)
using namespace std;
const int MAXN = 1e5+11;
const double EPS = 1e-7;
typedef long long ll;
typedef unsigned long long ull;
const ll MOD = 10086;
unsigned int SEED = 17;
const ll INF = 1ll<<60;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
struct LB{
ll b[66];
void clear(){
rep(i,0,62) b[i]=0;
}
void insert(ll x){
rrep(i,62,0) if(x>>i&1){
if(b[i]) x^=b[i];
else{
b[i]=x;
rrep(j,i-1,0) if(b[j]&&(b[i]>>j&1)) b[i]^=b[j];
rep(j,i+1,62) if(b[j]>>i&1) b[j]^=b[i];
break;
}
}
}
ll rk1(){
ll res=0;
rrep(i,62,0) res^=b[i];
return res;
}
void merge(LB rhs){
rep(i,0,62) if(rhs.b[i]) insert(rhs.b[i]);
}
}B[MAXN];
struct UF{
int p[MAXN];
void init(int n){
rep(i,1,n) p[i]=i;
}
int find(int x){
if(x==p[x]) return x;
// int o=p[x];
int t=find(p[x]);
B[t].merge(B[x]);
return p[x]=t;
}
ll link(int a,int b){
a=find(a);b=find(b);
if(a==b) return B[a].rk1();
p[a]=b;B[b].merge(B[a]);
return B[b].rk1();
}
}uf;
ll a[MAXN],n,x[MAXN],ans[MAXN];
bool vis[MAXN];
int main(){
while(cin>>n){
uf.init(n);
memset(vis,0,sizeof vis);
rep(i,1,n) a[i]=read();
rep(i,1,n) x[i]=read();
rep(i,1,n) B[i].clear();
rep(i,1,n) B[i].insert(a[i]);
ll mx=0;
rrep(i,n,1){
if(i==n) mx=ans[i]=a[x[n]],vis[x[n]]=1;
else{
ans[i]=-1;
vis[x[i]]=1;
if(vis[x[i]-1]&&x[i]-1>0){
int a=uf.find(x[i]-1);
mx=ans[i]=max(mx,uf.link(x[i],a));
}
if(vis[x[i]+1]&&x[i]+1<=n){
int a=uf.find(x[i]+1);
mx=ans[i]=max(mx,uf.link(x[i],a));
}
if(ans[i]==-1){
mx=ans[i]=max(mx,a[x[i]]);
}
}
//rep(j,1,n) cout<<j<<" "<<uf.p[j]<<endl;
}
rep(i,1,n) println(ans[i]);
}
return 0;
}