题意:求最小割集 \(C\),使得 \(\frac{\sum_{i∈C} cost_i}{|C|}\) 最小
模型就是 01 分数规划 \(\frac{\sum_{i=1}^{m}cost_i\cdot x}{\sum_{i=1}^{m}c_i\cdot x}\),其中 \(c_i\) 恒为 1,\(x\) 为 \(0\) 或 \(1\)
令上式为 \(λ\),简单变换后有 \(\sum_{i=1}^{m}(cost_i-1\cdot λ)x_i\),利用单调性进行二分,迭代时边的代价为 \(cost_i-λ\)
整型模板改了下发现跑不动图,随便网上捡了个模板 (`・ω・)
#include<bits/stdc++.h>
#define rep(i,j,k) for(int i = j; i <= k; i++)
#define repp(i,j,k) for(int i = j; i < k; i++)
#define rrep(i,j,k) for(int i = j; i >= k; i--)
#define erep(i,u) for(int i = head[u]; ~i; i = nxt[i])
#define scan(a) scanf("%d",&a)
#define scann(a,b) scanf("%d%d",&a,&b)
#define scannn(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define println(a) printf("%d\n",a)
#define printbk(a) printf("%d ",a)
#define print(a) printf("%d",a)
using namespace std;
const int maxn = 1e3+11;
const double oo = 1e12;
const double eps = 1e-7;
typedef long long ll;
int to[maxn<<1],nxt[maxn<<1];
double cap[maxn<<1];
int head[maxn],tot;
void init(){
memset(head,-1,sizeof head);
tot=0;
}
void add(int u,int v,double w){
to[tot]=v;
nxt[tot]=head[u];
cap[tot]=w;
// flow[tot]=0;
head[u]=tot++;
swap(u,v);
to[tot]=v;
nxt[tot]=head[u];
cap[tot]=w;
// flow[tot]=0;
head[u]=tot++;
}
int h[maxn],num[maxn],vis[maxn];
int s,t,n,m;
double aug(int u,double flow){ // double!!!
if(u==t) return flow;
double l=flow;
int tmp=n-1;
erep(i,u){
int v=to[i];
if(h[u]==h[v]+1&&cap[i]>eps){
double f=aug(v,min(l,cap[i]));
l-=f;cap[i]-=f;cap[i^1]+=f;
if(l<eps||h[s]==n) return flow-l;
}
if(cap[i]>eps&&h[v]<tmp) tmp=h[v];
}
if(l==flow){
num[h[u]]--;
if(num[h[u]]==0) h[s]=n;
else{
h[u]=tmp+1;
num[h[u]]++;
}
}
return flow-l;
}
double isap(){
double ans=0;
memset(h,0,sizeof h);
memset(num,0,sizeof num);
num[0]=n;
while(h[s]<n) ans+=aug(s,oo);
return ans;
}
void dfs(int u){
erep(i,u){
int v=to[i];
if(cap[i]>eps&&!vis[v]){
vis[v]=1;
dfs(v);
}
}
}
int a[maxn],b[maxn];
double c[maxn];
bool C(double lambda){
init();
double ans=0;
rep(i,1,m){
if(c[i]-lambda<0){
ans+=c[i]-lambda;
}else{
add(a[i],b[i],c[i]-lambda);
}
}
ans+=isap();
return ans>eps;
}
int main(){
while(cin>>n>>m){
rep(i,1,m) cin>>a[i]>>b[i]>>c[i];
s=1;t=n;
double lo=0,hi=1e8,mid;
rep(i,1,50){
mid=(hi+lo)/2.0;
if(C(mid)) lo=mid;
else hi=mid;
}
double lambda=mid;
memset(vis,0,sizeof vis);
vis[s]=1; dfs(s);
int ans=0; vector<int> vec;
rep(i,1,m){
if(vis[a[i]]+vis[b[i]]==1||c[i]+eps<lambda){
ans++;
vec.push_back(i);
}
}
println(ans);
for(int i=0;i<vec.size();i++){
if(i==vec.size()-1)println(vec[i]);
else printf("%d ",vec[i]);
}
}
return 0;
}